The Touchpoints Triangles and the Feuerbach Hyperbolas

نویسندگان

  • Sándor N. Kiss
  • Paul Yiu
  • P. Yiu
چکیده

In this paper we generalize the famous Kariya theorem on the perspectivity of a given triangle with the homothetic images of the intouch triangle from the incenter to the touchpoints triangles of the excircles, leading to the triad of ex-Feuerbach hyperbolas. We also study in some details the triangle formed by the orthocenters of the touchpoints triangles. An elegant construction is given for the asymptotes of the Feuerbach hyperbolas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similar Triangles, Another Trace of the Golden Ratio

In this paper we investigate similar triangles which are not congruent but have two pair congruent sides. We show that greatest lower bound of values for similarity ratio of such triangles is golden ratio. For right triangles, we prove that the supremum of values for similarity ratio is the square root of the golden ratio.

متن کامل

On Tensor Product of Graphs, Girth and Triangles

The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.

متن کامل

Statics and the Moduli Space of Triangles

The variance of a weighted collection of points is used to prove classical theorems of geometry concerning homogeneous quadratic functions of length (Apollonius, Feuerbach, Ptolemy, Stewart) and to deduce some of the theory of major triangle centers. We also show how a formula for the distance of the incenter to the reflection of the centroid in the nine-point center enables one to simplify Eul...

متن کامل

Some finite groups with divisibility graph containing no triangles

Let $G$ be a finite group. The graph $D(G)$ is a divisibility graph of $G$. Its vertex set is the non-central conjugacy class sizes of $G$ and there is an edge between vertices $a$ and $b$ if and only if $a|b$ or $b|a$. In this paper, we investigate the structure of the divisibility graph $D(G)$ for a non-solvable group with $sigma^{ast}(G)=2$, a finite simple group $G$ that satisfies the one-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014